Python Basics

1. Introduction
2. Variables
3. Debugging

4. The first program

Introduction

Problem solving is a central part of computer science, the solutions that you create
through the problem solving process are algorithms. An algorithm is a step by step list of
instructions that if followed exactly will solve the problem under consideration.

Problem solving is a central part of computer science, the solutions that you create
through the problem solving process are algorithms. An algorithm is a step by step list of
instructions that if followed exactly will solve the problem under consideration.

For example, an algorithm to compute the length of a triangle’s hypotenuse might look
like this:
Algorithm Example 1 (English):

e Ask for the lengths of the two sides
e Use Pythagorean Theorem to find hypotenuse
e Display the hypotenuse

Algorithms are like recipes: they must be followed exactly, they must be clear and
unambiguous, and they must end. For improved precision, algorithms are often written in
pseudocode.

Algorithms are like recipes: they must be followed exactly, they must be clear and
unambiguous, and they must end. For improved precision, algorithms are often written in
pseudocode.

Algorithm Example 2 (Pseudocode).

e Ask for length of non-hypotenuse sides:

= Ask for first side's length. Call this side a.

m Ask for second side's length. Call this side b.
e |et

hypotenuse = +/ o+

e Display the hypotenuse length

Once we have such a solution, we can use our computer to automate its execution.
Programming is a skill that allows a computer scientist to take an algorithm and
represent it in a notation (a program) that can be followed by a computer. A program is
written in a programming language such as Python, the language you will learn in this
course!

Once we have such a solution, we can use our computer to automate its execution.
Programming is a skill that allows a computer scientist to take an algorithm and
represent it in a notation (a program) that can be followed by a computer. A program is
written in a programming language such as Python, the language you will learn in this
course!

side_a = int(input("Enter the length of the first side:"))
side b = int(input("Enter the length of the second side:"))
hypotenuse = (side_a**2 + side b**2)**(1/2)

print("The hypotenuse of that triangle is:", hypotenuse)

Enter the length of the first side:3
Enter the length of the second side:4
The hypotenuse of that triangle is: 5.0

In [3]:

display quiz(path+"algo.json", question_alignment='center', max_width=800)

Which one is the definition of an algorithm?

A special kind of It contains well-defined, A step-by-step list of

notation used to unambiauous steps and It must be decribed instructions for solving
. 9 ps a using programming any instance of the
describe how to solve a must procude result in | ,
T anguage. problem that might
problem. a finite time. arise

7 /57

Hello, Python

Python emphasizes readability and is an interpreted language, which for beginners
means that Python instructions can be typed into an interactive prompt, or can be stored
in a plain text file (called a "script") and run later. These instructions are evaluated and

the commands are executed by the Python interpreter.

Python emphasizes readability and is an interpreted language, which for beginners
means that Python instructions can be typed into an interactive prompt, or can be stored
in a plain text file (called a "script") and run later. These instructions are evaluated and

the commands are executed by the Python interpreter.

Source code:
hello.c Machine code: H ll |
. ello:
2:2: : — resuit

| —s CONMPILER — nob oA run the
LEEC - program o
- Program (also -
called binary,
executable ...)
Source code:
hello.py
o
P
’ O

A command, often called a statement, instructs the interpreter to do something. The first
program described in many programming Language introductions is "Hello, World". This
simple program demonstrates how a particular language produces a result, also how a
language represents text and outputs a nominal greeting ©

A command, often called a statement, instructs the interpreter to do something. The first
program described in many programming Language introductions is "Hello, World". This
simple program demonstrates how a particular language produces a result, also how a
language represents text and outputs a nominal greeting ©

print('Hello, World!")

Hello, World!

A command, often called a statement, instructs the interpreter to do something. The first
program described in many programming Language introductions is "Hello, World". This
simple program demonstrates how a particular language produces a result, also how a
language represents text and outputs a nominal greeting ©

print('Hello, World!")

Hello, World!

There are several aspects to note even in this simple Python statement.

e First, print() is a built-in function, a pre-defined operation that Python can use
to produce output, a result of the program that will be made visible to the user. The
print is followed by opening and closing parentheses; what comes between those
parentheses is the value or arguments to be printed.

e Second, fixed values such as numbers, letters, and strings, are called constants

which is a data where their value does not change. String constants use single

quotes ' or double quotes " in Python.

e Second, fixed values such as numbers, letters, and strings, are called constants

which is a data where their value does not change. String constants use single

quotes ' or double quotes " in Python.

Notice that it is possible for statements to span more than one line using \ or print
multiple objects seperated by , .

e Second, fixed values such as numbers, letters, and strings, are called constants
which is a data where their value does not change. String constants use single

quotes ' or double quotes " in Python.

Notice that it is possible for statements to span more than one line using \ or print
multiple objects seperated by , .

print('Hello,\
World")

print('Hello', 'World'")

Hello, World
Hello World

e Second, fixed values such as numbers, letters, and strings, are called constants

which is a data where their value does not change. String constants use single

quotes ' or double quotes " in Python.

Notice that it is possible for statements to span more than one line using \ or print
multiple objects seperated by , .

print('Hello,\
World")

print('Hello', 'World'")

Hello, World
Hello World

"hi python'
'Hello, World!'

'Hello, World!'

In [7]: display_quiz(path+"print.json", max_width=800)

What appears in the output window when the following statement executes?

print ("Hello!")

Nothing is printed. It generates a runtime error. Hello!

5 12! "Hello!"

Using string methods like a word processor

One of the simplest tasks you can do with strings is to change the case of the words in a
string.

One of the simplest tasks you can do with strings is to change the case of the words in a
string.

print('hi python'.title())

Hi Python

One of the simplest tasks you can do with strings is to change the case of the words in a
string.

print('hi python'.title())

Hi Python

In this example, we have the lowercase string 'hi python'. The method title() appears
after the string in the print() call. A method is an action that Python can perform on a
piece of data. The dot (.) after the string tells Python to make the title() method act

on the string. Every method is followed by a set of parentheses that can accept arguments
just like a function.

There are also other useful methods for string

There are also other useful methods for string

In [9]: print('hi python'.upper()) # change a string to all uppercase
print('Hello World'.lower()) # change a string to all Lowercase
print(' hi python '.strip()) # remove extra whitespace on the right and left .

HI PYTHON
hello world
hi python

There are also other useful methods for string

print('hi python'.upper()) # change a string to all uppercase
print('Hello World'.lower()) # change a string to all Lowercase
print(' hi python '.strip()) # remove extra whitespace on the right and Lleft

HI PYTHON
hello world
hi python

These example statements introduce another language feature. The # symbol denotes
the beginning of a comment, a human-readable notation to the Python code that will be
ignored by the computer when executed. A high-level description at the top of a script
introduces a human reader to the overall purpose and methodology used in the script. All
of the characters to the right of the # until the end of the line are ignored by Python.

Exercise 1: Complete the following items to
make sure you correctly set up the
environment.

1. Open the explorer on the left-hand side or open the jupyter notebook.

2. Connect to the Python environment

3. Create a new code cell below and write a code snippet that prints out "finish".
Execute the cell.

4. Create a new script called "finish.py" and write a code snippet that prints out

"finish". Execute the script.

Exercise 1: Complete the following items to
make sure you correctly set up the
environment.

1. Open the explorer on the left-hand side or open the jupyter notebook.

2. Connect to the Python environment

3. Create a new code cell below and write a code snippet that prints out "finish".
Execute the cell.

4. Create a new script called "finish.py" and write a code snippet that prints out

"finish". Execute the script.

Your code below

Exercise 1: Complete the following items to
make sure you correctly set up the
environment.

1. Open the explorer on the left-hand side or open the jupyter notebook.

2. Connect to the Python environment

3. Create a new code cell below and write a code snippet that prints out "finish".
Execute the cell.

4. Create a new script called "finish.py" and write a code snippet that prints out

"finish". Execute the script.
Your code below

%run finish.py

Operators and Expressions

Using operand like a calculator

Besides string, numbers are often used in programming. Python's built-in operators allow
numeric values to be combined in a variety of familiar ways. Note that in Python, 2 + 3

is called an expression, which consists of values/operands (suchas 2 or 3)and
operators (such as +), and they are special statements!

Besides string, numbers are often used in programming. Python's built-in operators allow
numeric values to be combined in a variety of familiar ways. Note that in Python, 2 + 3

is called an expression, which consists of values/operands (suchas 2 or 3)and
operators (such as +), and they are special statements!

Integer

print(3+4) # Prints
print(5-6) # Prints
print(7*8) # Prints
print(45/4) # Prints
print(2**10) # Prints
7

-1

56

11.25

1024

“7”, which is 3 plus 4.

“-1”, which i1s 5 minus 6

“56”, which i1s 7 times 8

“11.25”, which 1is 45 divided by 4, / is float(true)
“1024”, which is 2 to the 10th power

When an operation such as forty-five divided by four produces a non-integer result, such
as 11.25, Python implicitly switches to a floating-point representation. When purely

integer answers are desired, a different set of operators can be used.

When an operation such as forty-five divided by four produces a non-integer result, such
as 11.25, Python implicitly switches to a floating-point representation. When purely
integer answers are desired, a different set of operators can be used.

print(45//4) # Prints “11”, which 1is 45 integer divided by 4, // is floor
print(45%4) # Prints “1”, because 4 * 11 + 1 = 45

11

1

When an operation such as forty-five divided by four produces a non-integer result, such
as 11.25, Python implicitly switches to a floating-point representation. When purely
integer answers are desired, a different set of operators can be used.

print(45//4) # Prints “11”, which 1is 45 integer divided by 4, // is floor
print(45%4) # Prints “1”, because 4 * 11 + 1 = 45

11

1

The double slash signifies the integer floor division operator, while the percentage
symbol signifies the modulus, or remainder operator.

In [14]: display_quiz(path+"type.json", max_width=800)

What value is printed when the following statement executes?

print (18.0 // 4)

When more than one operator appears in an expression, the order of evaluation depends
on the rules of precedence. Python follows the same precedence rules for its
mathematical operators that mathematics does.

When more than one operator appears in an expression, the order of evaluation depends
on the rules of precedence. Python follows the same precedence rules for its
mathematical operators that mathematics does.

print(3-1*2)
print((3-1)%*2)
print(2**4/2)

(o I S

In [16]: display_quiz(path+"precedence.json", max_width=800)

What is the value of the follwing expression?

16 -2 *5// 3+ 1

14 24

13.667 3

String values also can be combined and manipulated in some intuitive ways.

String values also can be combined and manipulated in some intuitive ways.

s = 'hello’ + 'world'
t=5s %4

print(s)

print(t)

helloworld
helloworldhelloworldhelloworldhelloworld

String values also can be combined and manipulated in some intuitive ways.

s = 'hello' + 'world'’
t =5 *4

print(s)

print(t)

helloworld
helloworldhelloworldhelloworldhelloworld

The plus operator concatenates string values, while the multiplication operator replicates
string values.

Variables

A variable is like a box in the computer’'s memory where you can store value. If you want
to use the result of an evaluated expression later in your program, you can save it inside a
variable!

A variable is like a box in the computer’'s memory where you can store value. If you want
to use the result of an evaluated expression later in your program, you can save it inside a
variable!

You'll store values in variables with an assignment statement. An assignment statement
consists of a variable name, an equal sign, and the value to be stored. In Python, every
single thing is stored as an object. A Python variable is actually a reference to an
object!

A variable is like a box in the computer’'s memory where you can store value. If you want
to use the result of an evaluated expression later in your program, you can save it inside a
variable!

You'll store values in variables with an assignment statement. An assignment statement
consists of a variable name, an equal sign, and the value to be stored. In Python, every
single thing is stored as an object. A Python variable is actually a reference to an
object!

memory

varName

-

source: https://cs.berea.edu//cpp4python/AtomicData/AtomicData.html

A variable is like a box in the computer’'s memory where you can store value. If you want
to use the result of an evaluated expression later in your program, you can save it inside a
variable!

You'll store values in variables with an assignment statement. An assignment statement
consists of a variable name, an equal sign, and the value to be stored. In Python, every
single thing is stored as an object. A Python variable is actually a reference to an
object!

memory

varName

-

source: https://cs.berea.edu//cpp4python/AtomicData/AtomicData.html

varName = 100

A variable is created the first time a value is stored in it. After that, you can use it in
statements with other variables and values. When a variable is assigned a new value, the
old value is forgotten. This is called overwriting the variable.

A variable is created the first time a value is stored in it. After that, you can use it in
statements with other variables and values. When a variable is assigned a new value, the
old value is forgotten. This is called overwriting the variable.

spam = 'Hello' # 'Hello' 1s a string object

print(spam) # spam 1s a variable, it is just a reference or tag
spam = 'Goodbye' # 'Goodbye' 1s another string object

print(spam)

Hello

Goodbye

In [20]: display_quiz(path+"assignment.json", max_width=800)

What is printed when the following statements execute?

19 325

Thursday Nothing is printed. A runtime error occurs.

The naming of variables is largely up to the user in Python. Python's simple rules are that
variable names must begin with an alphabet letter or the underscore character, and may

consist of an arbitrary number of letters, digits, and the underscore character (A-z, 0-9,
and).

The naming of variables is largely up to the user in Python. Python's simple rules are that
variable names must begin with an alphabet letter or the underscore character, and may
consist of an arbitrary number of letters, digits, and the underscore character (A-z, 0-9,
and).

Valid variable names Invalid variable names

current_balance current-balance (hyphens are not allowed)
currentBalance current balance (spaces are not allowed)

account4 4account (can't begin with a number)

42 42 (can't begin with a number)

TOTAL_SUM TOTAL_*UM (special characters like * are not allowed)

hello ‘hello’ (special characters like ' are not allowed)

Python variable names are case-sensitive, meaning that capitalization matters. A variable
named size is treated as distinct from variables named Size or SIZE.

Python variable names are case-sensitive, meaning that capitalization matters. A variable
named size is treated as distinct from variables named Size or SIZE.

A small number of keywords, names that are reserved for special meaning in Python,
cannot be used as variable names. You can view this list by accessing the built-in Python
help system.

Python variable names are case-sensitive, meaning that capitalization matters. A variable
named size is treated as distinct from variables named Size or SIZE.

A small number of keywords, names that are reserved for special meaning in Python,
cannot be used as variable names. You can view this list by accessing the built-in Python

help system.

help('keywords")

Here is a list of the Python keywords.

help.

False

None

True
___peg_parser__
and

as

assert

async

await

break
class
continue
def

del

elif
else
except
finally

Enter any keyword to get more

for

from
global
if
import
in

is
lambda
nonlocal

not

or
pass
raise
return
try
while
with
yield

Exercise 2: Ask Al tools to explain the rules for
naming variables in Python.

e ChatGPT
e Gemini

e Copilot

Refer to https://hackmd.io/@phonchi/LLM_Tutor

Variables can be used to store all of the types of data values that Python is able to
represent.

Variables can be used to store all of the types of data values that Python is able to
represent.

my_string = 'characters'

my Boolean = True # True/False

my _integer = 5

my floating point = 26.2

my _complex = 2+1j # Note that 1 can not be omitted

You can condense the above statements into one Line separated by ;

my_string = 'characters'; my Boolean = True; my_integer = 5; my_floating poin

Multiple Assignment!
You can also assign values to more than one variable using just a single L1
my_string, my_ Boolean, my_integer, my_floating point, my_complex = 'character

In [23]:

print(10)
print(3.14)
print(2e1l0)

scientific notation (https://en.wikipedia.org/wiki/Scientific

print(12 000) # you can group digits using underscores to make Large numbers |

print(3+2j)

10
3.14
20000000000 . 0
12000

(3+23)

print(10)

print(3.14)

print(2el10) # scientific notation (https://en.wikipedia.org/wiki/Scientific
print(12 000) # you can group digits using underscores to make Large numbers |
print(3+27j)

10
3.14
20000000000 . 0
12000

(3+23)

Note that when you're writing long numbers, you can group digits using underscores to
make large numbers more readable. In addition, print() can be used to print any
numerical number including those in scientific notation.

Data types

In Python variables and constants have a type. We can ask Python what type something is
by using the type() function

In Python variables and constants have a type. We can ask Python what type something is
by using the type() function

type('Hello, World!'), type(False), type(4), type(3.2), type(3+5j)

(str, bool, int, float, complex)

In Python variables and constants have a type. We can ask Python what type something is
by using the type() function

type('Hello, World!'), type(False), type(4), type(3.2), type(3+5j)
(str, bool, int, float, complex)
type(my_string), type(my_Boolean), type(my_integer), type(my floating point)

(str, bool, int, float, complex)

You can convert object of one type to another using cast by str(), float(), int(),
etc.

You can convert object of one type to another using cast by str(), float(), int(),
etc.

float(3)

3.0

You can convert object of one type to another using cast by str(), float(), int(),
etc.

float(3)
3.0

int(3.9)

You can convert object of one type to another using cast by str(), float(), int(),

etc.
float(3)
3.0

int(3.9)

int('3")

You can convert object of one type to another using cast by str(), float(), int(),

etc.
float(3)
3.0

int(3.9)

int('3")

Python ord() and chr() are built-in functions. They are used to convert a character to
an int and vice versa. Python ord() and chr() functions are exactly opposite of each
other.

Python ord() function takes string argument of a single Unicode character and return its
integer Unicode code point value. Let's look at some examples of using ord() function.

Python ord() and chr() are built-in functions. They are used to convert a character to
an int and vice versa. Python ord() and chr() functions are exactly opposite of each
other.

Python ord() function takes string argument of a single Unicode character and return its
integer Unicode code point value. Let's look at some examples of using ord() function.

X = ord('A")
print(x)

65

Python ord() and chr() are built-in functions. They are used to convert a character to
an int and vice versa. Python ord() and chr() functions are exactly opposite of each
other.

Python ord() function takes string argument of a single Unicode character and return its
integer Unicode code point value. Let's look at some examples of using ord() function.

X = ord('A")
print(x)
65

Python chr() function takes integer argument and return the string representing a
character at that code point.

Python ord() and chr() are built-in functions. They are used to convert a character to
an int and vice versa. Python ord() and chr() functions are exactly opposite of each
other.

Python ord() function takes string argument of a single Unicode character and return its
integer Unicode code point value. Let's look at some examples of using ord() function.

X = ord('A")
print(x)
65

Python chr() function takes integer argument and return the string representing a
character at that code point.

y = chr(65)
print(y)

A

Conversion

There are two types of type conversion in Python.

e Implicit Conversion - automatic type conversion. Python always converts smaller
data types to larger data types to avoid the loss of data.

e Explicit Conversion - manual type conversion

There are two types of type conversion in Python.

e Implicit Conversion - automatic type conversion. Python always converts smaller
data types to larger data types to avoid the loss of data.

e Explicit Conversion - manual type conversion

5+ 4.2 # Implicit conversion

9.2

There are two types of type conversion in Python.

e Implicit Conversion - automatic type conversion. Python always converts smaller
data types to larger data types to avoid the loss of data.

e Explicit Conversion - manual type conversion

5+ 4.2 # Implicit conversion

9.2

In Python, complex > float > int > bool

There are two types of type conversion in Python.

e Implicit Conversion - automatic type conversion. Python always converts smaller
data types to larger data types to avoid the loss of data.

e Explicit Conversion - manual type conversion

5+ 4.2 # Implicit conversion

9.2

In Python, complex > float > int > bool

int(4.7) + 3 # Explicit conversion

In [34]: display_quiz(path+"ex_type.json", max_width=800)

What value is printed when the following statement executes?

print (int (53.785))

53.785 54

Nothing is printed. It generates a runtime error. 53

Debugging

Programming languages are not very forgiving for beginners, and a great deal of time
learning to write software can be spent trying to find bugs, or errors in the code. Locating
such bugs and correcting them is thus known as debugging.

Programming languages are not very forgiving for beginners, and a great deal of time
learning to write software can be spent trying to find bugs, or errors in the code. Locating

such bugs and correcting them is thus known as debugging.

There are three major classes of bug that we create in software:

e syntax errors (mistakes in the symbols that have been typed)
e semantic errors (mistakes in the meaning of the program)
e runtime errors (mistakes that occur when the program is executed.)

Syntax errors are the most common for novices, and include simple errors such as
forgetting one of the quote marks at the beginning or ending of a text string, failing to
close open parentheses, or misspelling the function name print() . As examples:

Syntax errors are the most common for novices, and include simple errors such as
forgetting one of the quote marks at the beginning or ending of a text string, failing to
close open parentheses, or misspelling the function name print() . As examples:

print(5 +)

File "C:\Users\adm\AppData\Local\Temp\ipykernel 61744\2298961889.p
y", line 1
print(5 +)

SyntaxError: invalid syntax

Syntax errors are the most common for novices, and include simple errors such as
forgetting one of the quote marks at the beginning or ending of a text string, failing to
close open parentheses, or misspelling the function name print() . As examples:

print(5 +)
File "C:\Users\adm\AppData\Local\Temp\ipykernel 61744\2298961889.p
y", line 1

print(5 +)

SyntaxError: invalid syntax

This expression is missing a value between the addition operator and the closing
parenthesis.

print(mystring)

NameError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel _61744\551408598.py in

----> 1 print(mystring)

NameError: name 'mystring' is not defined

print(mystring)

NameError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel _61744\551408598.py in

----> 1 print(mystring)

NameError: name 'mystring' is not defined

In this case it found a name error and reports that the variable being printed has not been
defined. Python can’t identify the variable name provided.

NameError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel_61744\1320233283.py in <module>

----> 1 pront(5)

NameError: name 'pront' is not defined

NameError Traceback (most recent call

last)
~\AppData\Local\Temp\ipykernel _61744\1320233283.py in
----> 1 pront(5)

NameError: name 'pront' is not defined

Like calling someone by the wrong name, misspelling the name of a known function or
variable can result in confusion and embarrassment.

Semantic errors are flaws in the algorithm, or flaws in the way the algorithm is expressed
in a language. Examples might include using the wrong variable name data type in a
calculation, or getting the order of arithmetic operations wrong in a complex expression.

Semantic errors are flaws in the algorithm, or flaws in the way the algorithm is expressed
in a language. Examples might include using the wrong variable name data type in a
calculation, or getting the order of arithmetic operations wrong in a complex expression.

numl = input('Enter a number:")
num2 = input('Enter another number:')
sum_var = numl + num2

print('The sum of', numl, 'and', num2, 'is', sum_var)
Enter a number:3

Enter another number:2
The sum of 3 and 2 is 32

Semantic errors are flaws in the algorithm, or flaws in the way the algorithm is expressed
in a language. Examples might include using the wrong variable name data type in a
calculation, or getting the order of arithmetic operations wrong in a complex expression.

numl = input('Enter a number:")
num2 = input('Enter another number:')
sum_var = numl + num2

print('The sum of', numl, 'and', num2, 'is', sum_var)
Enter a number:3

Enter another number:2
The sum of 3 and 2 is 32

The error is that the program performs concatenation instead of addition, because the
programmer failed to write the code necessary to convert the inputs to integers.

Semantic errors are flaws in the algorithm, or flaws in the way the algorithm is expressed
in a language. Examples might include using the wrong variable name data type in a
calculation, or getting the order of arithmetic operations wrong in a complex expression.

numl = input('Enter a number:")
num2 = input('Enter another number:')
sum_var = numl + num2

print('The sum of', numl, 'and', num2, 'is', sum_var)
Enter a number:3

Enter another number:2
The sum of 3 and 2 is 32

The error is that the program performs concatenation instead of addition, because the
programmer failed to write the code necessary to convert the inputs to integers.

The input() function waits for the user to type some text on the keyboard and press
ENTER and returns a string value. It allows the programmer to provide a prompt string.

Finally, runtime errors at this level might include unintentionally dividing by zero or using
a variable before you have defined it. Python reads statements from top to bottom, and it
must see an assignment statement to a variable before that variable is used in an

expression.

Finally, runtime errors at this level might include unintentionally dividing by zero or using
a variable before you have defined it. Python reads statements from top to bottom, and it
must see an assignment statement to a variable before that variable is used in an
expression.

5/0

ZeroDivisionError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel 61744\2874912419.py in

---->15/0

ZeroDivisionError: division by zero

In [40]: display _quiz(path+"error.json", max_width=800)

Which of the following is a semantic error?

Forgetting the closing parenthesis) on a print

Attempting to divide by 0. statement

Forgetting to divide by 100 when printing a
percentage amount.

Exercise 3: Employ Al tools to diagnose errors.

The first program

While the interactive shell is good for running Python instructions one at a time,
sometimes you have to use a script, to write entire Python programs. In this case, you'll
type the instructions into the file editor.

While the interactive shell is good for running Python instructions one at a time,
sometimes you have to use a script, to write entire Python programs. In this case, you'll
type the instructions into the file editor.

%iwritefile hello.py
This program says hello and asks for your name.
It also ask the age of you.

print('Hello, world!")

myName = input('What is your name? ') # ask for their name
print('It is good to meet you, ' + myName)

print('The length of your name is:\n' + str(len(myName)))
myAge = input('What is your age? ') # ask for their age
print('You will be ' + str(int(myAge) + 1) + ' in a year.')

Overwriting hello.py

Once you've entered your source code, the ipython magic %%writefile will save it so

that you won't have to retype it each time you start. You can then use another magic
%run to execute the python script.

Once you've entered your source code, the ipython magic %%writefile will save it so
that you won't have to retype it each time you start. You can then use another magic
%run to execute the python script.

%run hello.py

Exercise 4: Utilize Al tools to explain the
program or add comments to the program.

Exercise 5: Write a script that inputs a five-
digit integer from the user. Separate the
number into its individual digits. Print them
separated by three spaces each. For example,
if the user types in the number 42339, the
script shouldprint4 2 3 3 9

Hint: Use floor division (//) and remainder (%) to isolate the digits.

Your answer here

x=42339

Get the user's input from their keyboard and convert it to integer:
X = ("Enter a 5 digit integer')

Get the last digit by remainder

digits4d =

Perform floor division and get the remainig digits
X =
#....

Print out the results
(digitse, " ',digitsl,’ ',digits2,’ ',digits3,’

' digitsa)

Exercise 5: Employ Al tools to write a program
or enhance the program.

In [43]: from jupytercards import display flashcards
fpath= "https://raw.githubusercontent.com/phonchi/nsysu-mathl06A/refs/heads/m
display flashcards(fpath + ‘chl.json')

algorithm

Next

	Introduction
	Hello, Python
	Using string methods like a word processor

	Operators and Expressions
	Using operand like a calculator

	Variables
	Data types
	Conversion

	Debugging
	The first program

